Impacts of Agriculture on Groundwater Quality in the Southern High Plains Aquifer

Bridget R. Scanlon
Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Texas, USA
Basic Questions
Impacts of Agriculture on Groundwater Quality

• What impact does rain-fed (dryland) agriculture have on soil water and groundwater quality?
• How does irrigation affect soil water and groundwater quantity and quality?
• How can irrigation be managed to achieve sustainability with respect to water quantity and quality?
Water-level Changes
~ 1950s - 2007

Declines in SHP-N
30 m over 11,000 km²
2% of area of HP
21% of change in water storage

McGuire et al., 2009
Percent Change in Aquifer Saturated Thickness

~1950 – 2007

McGuire et al., 2009
Relationship between Groundwater Declines and Aquifer Saturated Thickness
Chloride (mg/L)

Median Cl SHP-N
21 mg/L
Aquifer thick: 45 m
Water table: 63 m

Median Cl SHP-S
180 mg/L
Aquifer thin: 25 m
Water table: 16 m
Basic Questions
Impacts of Agriculture on Groundwater Quality

• What impact does rain-fed (dryland) agriculture have on soil water and groundwater quality?

• How does irrigation affect soil water and groundwater quantity and quality?

• How can irrigation be managed to achieve sustainability with respect to water quantity and quality?
Soil Water Related to Different Land Uses

Natural:
MP: -200 m
Cl: 780 mg/L
NO3-N: 8.1 mg/L

Rain-fed
MP: -14 m
Cl: 8 mg/L
NO3-N: 32 mg/L

MP: -40 m
Cl: 720 mg/L
NO3-N: 71 mg/L
Natural Ecosystems

Very little to no recharge under natural ecosystems
Chloride as a Tracer of Water Movement

Plants exclude chloride during ET
Salt Distribution Beneath Natural Ecosystems
Salt Distribution Beneath Natural Ecosystems

![Graphs showing salt distribution](image_url)
Rain-fed Agriculture
Impact of Rainfed Agriculture

Downward head gradients
Low Cl…flushed zone drainage/recharge
Chloride Profile beneath Rainfed Agriculture
Flushing of Salts under Rainfed Agriculture
Impact of Increased Recharge on Groundwater Salinity

Water Table Depth 30 m
Saturated Thickness 15 m

Time since cultivation began (yr)

Groundwater TDS (mg/L)
Impact of Mobilizing Salt Inventories by Increased Recharge under Rain-fed Agriculture

- Cl ↑ by ~ 150 mg/L
- SO$_4$ ↑ by 480 mg/L
- TDS ↑ by ~ 1000 mg/L
- ClO$_4$ ↑ by 21 ug/L
- NO$_3$-N ↑ by 17 mg/L
Basic Questions
Impacts of Agriculture on Groundwater Quality

• What impact does rain-fed (dryland) agriculture have on soil water and groundwater quality?

• How does irrigation affect soil water and groundwater quantity and quality?

• How can irrigation be managed to achieve sustainability with respect to water quantity and quality?
Large water-level declines in irrigated areas in north
Representative Hydrographs in Irrigated Regions

Profile 2
Hale County

Profile 6
Lubbock County

Profiles 3, 4, & 12
Terry County

Profile 5
Dawson County
Impact of Irrigation on Basin Status

• Prior to irrigation, recharge = discharge

• After irrigation, added discharge through irrigation pumpage, ~ 95% of groundwater discharge

• Where does irrigation pumpage come from?
 – Groundwater storage
 – Reduced discharge
 – Increased recharge

• High Plains aquifer is essentially a closed basin with most discharge through pumpage
Impact of Irrigation on Soil Water and Groundwater Quality

• How is irrigation similar to desalinization?
• What impact does irrigation have on soil water quality?

50% 95%
Profiles under Irrigated Sites

Cl (mg/L)

Depth (m)

ClO₄⁻ (µg/L)

NO₃-N (mg/L)

SO₄ (mg/L)

Lub08-01
Profiles under Irrigated Sites

![Profiles under Irrigated Sites](image)
Impact of Mobilizing Salt Inventories by Increased Recharge under Rain-fed Agriculture

Min. Saturated Thickness (6 m)

- $\text{Cl} \uparrow$ by ~ 700 mg/L
- $\text{SO}_4 \uparrow$ by 860 mg/L
- TDS \uparrow by ~ 2500 mg/L
- $\text{ClO}_4 \uparrow$ by 18 ug/L
- NO_3-N \uparrow by 42 mg/L
Groundwater Solute Hydrographs

- **TDS (mg/L)**
 - Dawson
 - Gaines
 - Lubbock
 - Martin
 - Terry

- **NO₃-N (mg/L)**
 - Dawson
 - Gaines
 - Lubbock
 - Martin
 - Terry
Basic Questions
Impacts of Agriculture on Groundwater Quality

• What impact does rain-fed (dryland) agriculture have on soil water and groundwater quality?

• How does irrigation affect soil water and groundwater quantity and quality?

• How can irrigation be managed to achieve sustainability with respect to water quantity and quality
Sustainable Irrigation in the South

The diagram illustrates the relationship between sustainable irrigated area (% of cultivated area) and irrigation rate (mm/a). The current condition is marked by a red dot, indicating a high irrigation rate and a lower sustainable area. The black dot represents a scenario with a lower irrigation rate achieving a higher sustainable area.
Sustainable Practices from Water Quality Perspective

- To reduce salt buildup in soils, need to irrigate with more water
- To reduce N leaching, need to reduce N application, account for N in irrigation water
- Grow winter cover crop to take up N
- To reduce groundwater degradation, need to rotate between irrigated and rain-fed agriculture
Summary

- Large salt accumulations under rangeland from long-term drying since Pleistocene

- Rain-fed agriculture:
 - increases recharge to median 24 mm/yr
 - flushes salts into aquifer

- Irrigated agriculture:
 - Recharge similar to rain-fed agriculture
 - Continues to flush salts that accumulated under native vegetation
 - Accumulates salts in soil profile
 - Redistributes salts from groundwater to soil water
 - Recirculating salts will increase concentrations in groundwater depending on saturated thickness or assimilative capacity
 - Introduced salts, such as nitrate, will continue to increase if applications continue