Effects of drought on groundwater in Texas: Water level and spring flow data analysis of current and historic drought conditions

Texas Groundwater Protection Committee Meeting July 13, 2022

Causes and impacts of drought

- El Niño-Southern Oscillation (ENSO) and La Niña
- Warmer temperatures \rightarrow increased evaporation
- Variable precipitation \rightarrow decreased recharge
- Dwindling surface water supplies
- More reliance on groundwater

Ţ

- Declines in groundwater levels
- Stressed vegetation and crops

Previous droughts

- 1950 to 1957
 - Most significant drought recorded since 1895
 - 77 months
- 2010 to 2014
 - 2nd worst and longest statewide drought on record
 - 51 months
 - 2011 worst one-year drought on record
- Evidence of more severe megadroughts from tree-ring data
- Local scale droughts since 2014

Current drought

=

Groundwater response to drought

Observations

- Water level elevations
- Spring discharge
- Correlation with periods of dry conditions
- Impacts appear on variable timescales

Tools

- Drought indicator recorder wells and springs
- <u>TWDB monthly Texas Water</u> <u>Conditions Report</u>
- Average water level changes
- Hydrographs
- Well drilling counts

Image: Note of the second s

06/30/2022

Reference Date

Data from <u>TWDB Groundwater Database</u>. Difference in average monthly water levels for active recorder wells averaged by aquifer. Publishable results only. The number and locations of wells active over the relevant time periods are shown in each panel. Local groundwater conditions may vary from the average values indicated.

Ten Year Change by Aquifer

Reporting wells

176

Aquifer	Quarterly change	Annual change	5 year change	10 year change
CARRIZO	-7.80	-8.69	-17.00	-21.52
EDWARDS	-8.05	-10.30	-19.12	-2.58
EDWARDS-TRINITY	-1.50	-2.48	-2.07	0.10
GULF_COAST	-4.89	-3.14	-0.89	5.34
HUECO_BOLSON	-9.98	-7.97	-13.09	-8.26
OGALLALA	-0.49	0.29	-3.39	-4.38
PECOS VALLEY	-1.94	-2.40	0.51	-2.46
SEYMOUR	-1.06	-5.35	-0.85	1.15
TRINITY	-13.11	-15.92	-24.92	-8.47

249 Total active recorder wells

104

Counties represented

Well Drilling Activity – New Irrigation

Well Drilling Activity – Replacement

K Back to report NUMBER OF WELLS DRILLED BY YEAR AND PROPOSED USE

Proposed Use • Closed-Loop Geothermal • De-watering • Domestic • Environmental Soil Boring • Extraction • Fracking Supply • Industrial • Injection • Irrigation • Monitor • Other • Public Supply • Rig Supply • Stock • Test Well • Unknown

Ц ...

Assessing drought in water level data

- Variable response across aquifers and individual wells
- Areas of known exceptional or extreme drought conditions
- Aquifers susceptible to drought
- Aquifers that reflect changing conditions quickly
- Wells with long, consistent water level records
- Recorder well data
- Spring discharge data

30 20 SWN • 6837203 Castle Hills FOREST OAK MCARTHUR PARK +)10 SHEARER OAKWELL FARMS HILLS RIDGEVI 0 Water level change, feet Loop 368 WILSHIRE EAST VI Alamo Heights -10 Olmos Park Terrell Hills -20 **JEFFERSON** ITICELLO PARK **HNCKE PARK** Kirby Fort Sam SALADO -30 TOBIN HI -40 SKYLINE PAR San Antonio JEFFERSON HEIGHTS ROYAL VI -50 © 2022 To omTom, @ 2022 Microsoft Corporation Terms -60 -70 01/01/30 01/01/40 01/01/50 01/01/60 01/01/70 01/01/80 01/01/90 01/01/00 01/01/10 01/01/20 01/01/30

J-17 Well (6837203) period of record in Bexar County

Water level changes since 2000 in Bexar, Travis and Uvalde counties

Las Moras Springs, April 2019

Las Moras Springs, June 2022

Southern Portion of the Trinity Aquifer

Southern Portion of the Trinity Aquifer

Ę

Southern Portion of the Trinity Aquifer

=

Southern Portion of the Trinity Aquifer

Southern Portion of the Trinity Aquifer

June 2020

_	Flow (cfs)		
Spring Name	2020	2021	2022
Inspiring Oaks Spring	0.5	Dry	Dry

Southern Portion of the Trinity Aquifer

June 2020

April 2021

Groundwater data challenges

• Vast amount of data

Ę

- Heterogeneity of aquifer systems
- Local/regional influences
- Other factors to consider
 - Long term overuse and water level decline
 - Population growth/water use changes
 - Interaction with surface water
 - Cross-formational flow between aquifers

Questions?

Rebecca Storms, P.G.

Groundwater Monitoring <u>rebecca.storms@twdb.texas.gov</u> 512-475-3302