Hydrogeochemical Evaluation of the Texas Gulf Coast Aquifer System and Implications for Developing Groundwater Availability Models

> Presented to: TEXAS GROUNDWATER PROTECTION COMMITTEE (TGPC) Fiscal Year 2014, Second Quarter Meeting Wednesday, January 15, 2014 Texas Commission on Environmental Quality (TCEQ)

> > Presented by: Steve Young INTERA

Topics

- Project Overview
- Introduction to the Gulf Coast Aquifer System
- Areal Snapshots of Water Quality
- Vertical Cross Sections of Water Quality
- Estimate of Groundwater Age
- Groundwater Flow Modeling
- Upward migration of formation water along growth faults
- Summary of Findings

Project Overview

Project Overview

• Objective

-use geochemical data to identify relationships relevant for evaluating the conceptual flow model for the Gulf Coast Aquifer System (**GCAS**)

--identify potential data gaps in geochemical data and obtain additional measurements to help fill the gap

Method/Approach

- construct maps consist of areal plots and vertical cross-sections of ions, ion ratios, hydrogeochemical facies, stable isotopes, and groundwater ages based on ¹⁴C.

- develop transects through the Gulf Coast and Aquifer and focus sampling on a representative cross section for GMA 14, GMA 15, and GMA 16

- analyze these maps to identify lines of lines of evidence for groundwater mixing, flow paths, and ages

Nineteen Transects

Project Team

- INTERA

 Steve Young
 James Pinkard
- Tetra Tech

 Randy Basset
- Baer Engineering
 Michael Johnson
- Consultant - Ali Chowdhury
- TWDB Contract Manager - Cindy Ridgeway
- Financial Assistance - Lone Star GCD (Montgomery County)
- Assistance with Identifying and Sampling Wells
 -USGS (Houston Office); Lone Star GCD, Harris-Galveston Subsidence District,
 -Bluebonnet GCD, Texana GCD, Brush County GCD, Duval County GCD,

Introduction to the Gulf Coast Aquifer System

Aquifers and Geological Formations

ERA	Epoch		Est. Age (M.Y)	Geologic Unit	Hydrogeologic Unit	
	Pleistocene		0.7	Beaumont	CHICOT	
Cenozoic			1.6	Lissie		
	Pliocene		3.8	Willis	AQUIFER	
		1	11.2	Upper Goliad	EVANGELINE AQUIFER BURKEVILLE JASPER AQUIFER	
	Miocene	Late	14.5	Lower Goliad		
		Middle	-	Upper Lagarto		Vegua-Jackson Aguifer
			17.8	MiddleLagarto		Gulf Coast Aquifer System
		Early		Lower Lagarto		Surface Geology
			24.2	Oakville		Alluvium Terrace deposits
			32	Frio		Windblown deposits Beaumont Formation
	Oligocene		34	Vicksburg	CATAHOULA	Lissie Formation Willis Formation
						Goliad Formation Oakville Formation Catahoula Formation Frio Formation N Jackson Formation 15 30 Yegua Formation Miles

Salt Domes and Growth Faults

Sea Level Change

Areal Snapshots of Water Quality

Areal Profiles of TDS and Sulfate

Areal Profiles of Chloride and Cl/Br Ratios

Vertical Cross Sections of Water Quality

Hydrogeochemical Facies at Transect 3 (GMA 14)

Hydrogeochemical Facies at Transect 5 (GMA 15)

Hydrogeochemical Facies at Transect 8 (GMA 16)

Calcium Concentrations at Transect 34 (GMA 14)

Calcium Concentrations at Transect 56 (GMA 15)

Calcium Concentrations at Transect 8 (GMA 16)

Estimate of

Groundwater Age

¹⁴C Age (YBP) versus for Base of Chicot

¹⁴C Age (YBP) versus for Top of Evangeline

¹⁴C Age (YBP) versus for Base of Evangeline

Comparison of Groundwater Age Calculated from Field Data and Modeling Results

Source of Depth Estimate			Estimated Depth Range where Groundwater has an Age of 10,000 ybp						
			Lissie		Willis		Upper Goliad		
	Upper Limit	Lower Limit	Upper Limit	Lower Limit	Upper Limit	Lower Limit			
¹⁴ C Measurements Corrected			300	600	400	800	600	1100	
LCRB Model	Transect 34	GMA 14	250	600	600	850	900	1100	
LCRB Model	Transect 45	GMA 15	250	650	600	800	800	1400	
Northern Gulf Coast Aquifer System GAM	Transect 34	GMA 14	(1)	(1)	(1)	(1)	(1)	(1)	
Northern Gulf Coast Aquifer System GAM	Transect 45	GMA 15	250	650	600	800	200	300	
Central Gulf Coast Aquifer System GAM	Transect 45	GMA 15	400	500	400	700	700	800	
Central Gulf Coast Aquifer System GAM	Transect 8	GMA 16	(1)	(1)	(1)	(1)	(1)	(1)	
GMA 16 AGM	Transect 8	GMA 16	(1)	(1)	(1)	(1)	100	600	

Groundwater Flow Modeling

- Initial particles locations located along transects based at fixed elevations per 100 ft increments
- Particles are backtrack using a models pre-development water level conditions
- Time for particle to reach its recharge source at surface is the estimated age of groundwater

Recharge and Discharge Fluxes at Ground Surface for Predevelopment Conditions for LCRB Model

Recharge and Discharge Fluxes at Ground Surface for Predevelopment Conditions for Northern Gulf Coast GAM

Upward Migration of Formation Water Along Growth Faults

Meteoric and Compactional Circulation Pathways(from Dutton and others, 2006)

Elevated TDS in Formation Water in Catahoula

Mechanism for Upswelling of Brine Along Growth Faults(from Kuecher and others, 2001)

Fracture System between fault and sand acts as "oneway valve" for fluid flow into reservoir

Reservoir sand

High-Pressure Fluid sourced in deep sand

Fracture permeability enhanced by

FAULT

- tectonic deformation (episodic aseismic creep?)
- elevated fluid pressure (fluid pressure-dependent permeability)

Cooperation/feedback between the above mechanisms

Evidence of Upswelling: Origin of Methane

Lines of Evidence for Upswelling of Formation Water Contribution to Elevated TDS Concentrations

Transects 8 and 89

10

Na/Cl Ratio

9 8

7

> 2 1 0

Summary of Findings

Geochemical Analyses

Analyses Method and/or Map	Insight
Tabulated and plotted depth- average geochemical values for the Gulf Coast Aquifer System Region	Notable differences in the geochemistry of GMA 14, 15, and 16. These differences attributed to differences in climate, distribution of salt domes, and stratigraphy
Plots of hydrogeochemical facies, chloride values, and sand and salinity profiles along vertical cross-sections	Direction of groundwater flow and evidence of recharge, mixing, and "preferred-flow" region within or between aquifers
Analysis of carbon and isotope of gases such as carbon dioxide and methane	Evidence of movement along growth faults

GEOSCIENCE & ENGINEERING SOLUTIONS

Geochemical Analyses

Analyses Method and/or Map	Insight
Analysis of the hydropressure and brine concentrations in the Catahoula and deeper deposits	Evidence that a source of the increased total dissolved solids (TDS) near the coast is upswelling of brine
Analysis of stable isotopes of oxygen and hydrogen	Evidence of meteoric water
Analysis of carbon stable and radioactive isotopes	Estimate of groundwater age

Conceptual Flow Model

• The up-dip boundary for the regional Gulf Coast Aquifer System flow should be the Catahoula Formation outcrop;

• The downdip boundary for the regional Gulf Coast Aquifer System flow should allow groundwater to discharge across a large area of the ocean bottom;

• The numerical representation of the regional groundwater flow system should be constrained by estimates of groundwater age calculated from ¹⁴C measurements;

• A conceptual water budget should be developed and be guided by recharge estimates by Scanlon and others (2012) after appropriate uncertainty estimates have been developed;

Conceptual Flow Model (con't)

• Proper conceptualization and representation of groundwater mixing and flow paths requires vertical layering smaller than the thicknesses of the major aquifers; and the utility and accuracy of the GAMs could be improved is model layers represented the geological formations that comprised the Chicot, Evangeline, and Jasper Aquifers,

• General head boundaries do not accurately model recharge to an aquifer and should not be used for that purpose in any future GAMs for the Gulf Coast Aquifer System,

• A continuous, low permeability "Burkeville" Confining Unit does not exist up dip at the outcrop; and

Questions

Backpocket Slides

Regional Models for GCAS

- Northern Gulf Coast Aquifer System
 GAM
- Central Gulf Coast Aquifer System
- GMA 16 Alternative Groundwater
 Model
- Lower Colorado River Basin Model

Comparison of Corrected ¹⁴C Age Based on NETPATH Modeling and Pearson Correction

	Soil to Recharge Well to Well 5-1, Well 5-3, Well 5-12, Well 5-13, or Wel							
	5-18							
	5-1	5-3	5-12	5-13	5-18			
¹⁴ C _{MEAS} ybp	8,940	12,280	6,730	9,340	7,220			
¹⁴ C _{MEAS} pmc	32.85	21.67	43.25	31.25	40.69			
¹³ C _{MEAS} DIC	-9.3	-7.3	-13.3	-12.9	-10.0			
δ ³⁴ S meas	4.1	10.9	-1.0	8.3	-			
Mass Transfer ⁽¹⁾								
calcite	3.77	5.46	2.70	3.59	3.81			
CO _{2(g)}	2.23	2.25	2.97	3.82	2.87			
Ca/Na Ex	1.70	2.89	0.44	1.55	1.86			
Mg/Na Ex	-0.18	-0.51	-0.44	-0.50	-0.95			
K/Na Ex	-2.43	-4.60	-0.11	0.68				
NaCl	5.53	5.22	3.27	0.85	2.26			
gypsum	0.40	0.40	0.11	0.23	0.13			
pyrite	0.10	0.05	-	-	-			
Computed Values								
¹⁴ C _{ADJ} (ybp)	1,019	2,456	1,579	4,140	456			
¹⁴ C _{ADJ} (pmc)	37.16	29.17	52.36	51.57	43.00			
δ ¹³ C DIC calc	-9.3	-7.3	-13.1	-12.9	-10.8			
δ ³⁴ S calc	4.1	10.9	-1.0	8.3				
¹⁴ C _{ADJ} (ybp) ²	996	2,391	1,539	4,025	modern			

NOTES: ¹ millmoles

46

² Pearson Method

- Initial particles locations located along transects based at fixed elevations per 100 ft increments
- Particles are backtrack using a models pre-development water level conditions
- Time for particle to reach its recharge source at surface is the estimated age of groundwater

Transect 3 Sample (Aerial View)

Transect 3 Sample (Cross-section View)

Geochemical Parameters

Sample No.	Analyte	Lab	Sample No.	Analyte	Lab	
1	Dissolved Metals (Ca, Mg,		11	RSK 175 for C1, C2, C3		
	Na, K, Fe)		12	Gas extraction fee		
	TDS			Total Gas for methane,		
	Alkalinity			ethane, propane,	7	
2	рН	San	13	butane, and pentane(for	Zymax	
	Specific Conductance	Antonio		purpose of identifying		
	Br, Cl, F, SO ₄ (dissolved)	Testing		thermo versus biogenic		
3	Nitrate + Nitrite			carbon sources)		
Δ	H ₂ S		14	δS34 of SO4		
4	HS				University	
5	TOC Dissolved				of Arizona	
6	Fixed and hydrocarbon gas		15	δ018 of SO4	Environme	
b	composition				ntal Lab	
7	δC13 of C1, C2	7				
8	δD of C1, C2	Zymax	16	δC13 of DIC	Beta	
9	δ018 of H20			C-14	Analytics	
10	δD of H20					

Lithology for Transect 8 (GMA 16)

Calcium Concentrations at Transect 3 (GMA 14)

